Evaluating and Improving Proxy Selection Frameworks for Welfare Schemes

December 1, 2024

ECO-3500 Development Economics

Professor Bharat Ramaswami

We sincerely thank Professor Bharat for his invaluable guidance in conceptualizing the research framework and refining our methodology. We also extend our gratitude to our TFs, Rohit and Mritunjay, for their assistance with data files, technical support, and insightful feedback throughout the project.

1 Introduction

Welfare policies in developing countries often rely on outdated poverty line definitions for social programs, resulting in inaccurate targeting. Schemes targeting the bottom 40% of the population run into problems because income and consumption data used for these calculations are often misreported, hidden, or miscalculated. Mis-targeting in these schemes not only leads to resource wastage, but also results in significant inclusion and exclusion errors, undermining the schemes' effectiveness and reach. Since consumption is a better indicator of welfare, and households have the tendency to smooth consumption over time (unlike income), we would ideally want to observe a household's consumption expenditure to identify those eligible for social programs. However, given that consumption information is self-reported, it is not a very observable or verifiable metric for large-scale policies.

A way to overcome this is to use verifiable proxies that closely reflect consumption expenditure of households; this is exactly what a Proxy Means Test (PMT) does. Instead of income data, as used by the means test, PMTs use certain characteristics of households such as their possession of durable goods, and employment and residence categories as proxies to estimate their consumption and the corresponding decile they fall into.

The expenditure and behavior of people change over time, especially as income increases and trends change. Characteristics that previously indicated higher income may become easily accessible or even basic necessities as GDP and socio-economic conditions improve. For example, access to smartphones or internet—once markers of relative affluence—may no longer effectively distinguish between households in need and those that are not. These changes make it challenging to rely on static proxies for revising beneficiary lists, leading to potential errors in accurately identifying eligible households. Instead of a standard set of proxies, there is a need for a framework that gives the optimal set of proxies which best reflect household consumption expenditure.

2 Problem Statement

In this paper, we aim to find a framework that gives the optimal number and set of proxies that best predict household consumption expenditure. The framework's objective is to maximize the accuracy of the estimation (given by adjusted R square or \bar{R}^2), and minimize inclusion errors and exclusion errors. Then, we see whether these proxies can be used as time invariant estimates and if they would give accurate results even a decade later, given changes in environment, living standards, governance, technology and globalization. We also explore the changes in inclusion and exclusion errors with respect to changes in the poverty line.

Section 3 of the paper is a literature review that evaluates the effectiveness and shortcomings of existing PMT mechanisms. It delineates our motivation to overcome some of these drawbacks by introducing a novel framework that selects proxies to optimize the adjusted R-squared and better capture household consumption. Section 4 defines inclusion and exclusion errors associated with PMTs and explains how our paper aims to minimize them. Section 5 lays out the analytical framework and data used. Section 6 presents the results of the optimal PMT model, its comparison to existing PMTs, and the changes in inclusion and exclusion errors with respect to different poverty lines. Section 7 highlights the scope for future research and concludes the paper.

3 Motivation

PMTs have a rich literature, with a focus on targeting in developing countries. Grosh and Baker show that household characteristics can serve as reasonable proxies in assessing eligibility for social programs (Grosh and Baker). They further show that more information is generally better than less, though there are diminishing returns. Their model goes through a range of proxy sets: location, housing, ownership of durables, etc., which are chosen based on a high degree of correlation with consumption expenditure, and not with the goal of maximizing adjusted R square values. A similar approach is used by Mahamalik and Sahu where they create 6 binary proxies for possession of dwelling unit and land, caste, primary agriculture employment, and whether annual per capita expenditure on clothes is below Rs 216.29 (Mahamallik and Sahu). However, even their selection is based on a high correlation of these proxies with possession of Below Poverty Line (BPL) cards.

In a study using household survey data from Bangladesh, Indonesia, Rwanda and Sri Lanka, Kidd and Wylde findings show that the PMT is inherently inaccurate, especially at low levels of coverage, and it arbitrarily selects beneficiaries (Kidd and Wylde). They claim that it functions more like a simple rationing mechanism that selects some poor and non-poor but excludes large numbers of eligible poor from receiving benefits. Their argument relies on using R-squared as a measure of accuracy, which might mislead results. If we decide to evaluate the goodness of fit on R square instead, we will not be able to distinguish between variables that are good predictors and those that are not. Since \bar{R}^2 penalizes the addition of irrelevant variables, it's easy to observe when we should stop adding regressors. Hence, we improve on this research by focusing on adjusted R-square in our upcoming methodology.

With respect to the number of proxies, Klassen and Lange suggest that increasing the number of proxies (i.e. going from parsimonious models to models employing more proxies) exhibits quickly decreasing returns in terms of accuracy (Klasen and Lange). More importantly, parsimonious PMTs based on few easy-to-verify proxies such as geography and demographics perform worse in terms of targeting accuracy yet outcomes do not differ much from more sophisticated PMTs when it comes to poverty effects.

Given that there is high government intervention in India and a concerted effort to reduce poverty through various schemes like Pradhan Mantri Jan Dhan Yojana (PMJDY), Mahatma Gandhi National Rural Employment Guarantee Act (MGNREGA), and Public Distribution System (PDS), the need for effective targeting in India is crucial. Resources are scarce to begin with, but their distribution is further hampered by corruption, bureaucracy, and inadequate data. This makes it more essential to have accurate targeting mechanisms in India to ensure the best possible outcome for poverty alleviation. Our study aims to assess the effectiveness of the Proxy Means Test and provide a framework that would constitute an ideal targeting mechanism.

Our contribution is novel as it suggests an ideal, implementable framework for choosing the right proxies which will optimize targeting. We show that changing the goal of PMT models –from high degree of correlation to maximizing adjusted R-square (henceforth referred to as \bar{R}^2)–reduces errors and better predicts household consumption expenditure for the poor as compared to the above mentioned ones.

4 Inclusion and Exclusion Errors in PMTs

As we use a PMT instead of actual consumption data, it might be the case that some people who are eligible for the program (who truly fall in the bottom 40% bracket) may be misidentified as ineligible based on the proxies. This may happen if enumerators are not always objective during surveys and may lack the time to verify proxies. Or, in light of crises and shocks faced by households, households that fall into poverty but do not suffer a related change in the household characteristics and assets used as proxies may be excluded from receiving benefits. Such cases lead to exclusion errors or undercoverage, where eligible individuals fail to receive program benefits. This undercoverage makes the program ineffective in changing the welfare level of the intended beneficiaries, but it carries no budgetary cost. The other case of targeting error occurs when a person's "true" welfare level is above the cut-off but their predicted welfare is below it. Incorrectly identifying people as being eligible for program benefits is called exclusion error or leakage.

To address undercoverage, we increase the number of proxies to ensure that no single proxy dominates the classification process. As we include more variables, especially dynamic consumption variables like food habits or participation in subsidized programs, the \bar{R}^2) improves. This helps account for nuanced changes in household welfare over time, reducing the chances of excluding households experiencing recent income shocks. The model better captures their current welfare status by incorporating dynamic consumption indicators which highly correlate to a fall in incomes, such as the household's shift from consuming "costly dals" (like arhar and tur) to "poor dals," (like moong and urd), substituting ghee with vanaspati oil or reducing consumption of expensive, seasonal vegetables like spinach and lemons, and increasing consumption of basic vegetables like potatoes and onions. Adding more consumption variables balances proxies that reflect past wealth with those that indicate present conditions.

Other PMT models usually do not use consumption expenditure as proxies because they are

self-reported and unverifiable values. In our model, instead of including expenditure on certain unobservable variables, we include the type of consumable goods which the household possesses. For example, instead of including the total household expenditure on pulses, we create a variable for costly pulses. This is as easy to observe as any durable. We argue that it is easier to verify because, with the knowledge of an evaluator coming for inspection, one might hide their durable goods (say, give their TV to their neighbors), but they cannot possibly hide or change their entire month's ration of pulses, grains and oil. Although this method slightly increases leakage, it prioritizes accurately identifying poor households, a critical goal in developing economies. Moreover, by minimizing undercoverage and optimizing the \bar{R}^2 , our framework reduces inclusion and exclusion errors, providing a robust targeting solution.

5 Analytical Framework and Data

We first draw the PMT model from existing literature and use those proxies on 2011 Household Consumer Expenditure Survey (HCES) Data from the National Sample Survey (NSS 2010-11). Since the selection of these proxies is very subjective, we propose a more robust and systematic method to optimize the choice of proxies which will give the highest accuracy and predictive power. We start by choosing a single covariate amongst the 140 variables that give the highest \bar{R}^2 . The first chosen covariate is noted and appended to the regression model. In the next iteration we choose the covariate which gives the next highest \bar{R}^2 from the remaining 139 covariates. At each run, the chosen covariate is appended to the model until the \bar{R}^2 starts to fall. Eventually, we get a final set of covariates which maximise the \bar{R}^2 for all possible combinations of consumption items. Further in the paper, we'll refer to this model as the \bar{R}^2 maximising model. We then predict the consumption value and distribution of household consumption expenditure for 2022, using HCES data from NSS 2022-23, controlling for inflation.

6 Methodology and Results

6.1 Finding the optimal list of covariates

As mentioned in Section 5, by using the \bar{R}^2 maximizing model on 2011 data we find that \bar{R}^2 maximizes at the 73^{rd} step, after which it starts reducing. Figure 1 shows how the \bar{R}^2 progresses as the next best predictor is appended to the model. As can be seen, the graph is increasing albeit at a decreasing rate, and maximizes at the 73^{rd} step after which adding another variable will only reduce the model's \bar{R}^2 (the slope's shift isn't clearly visible as the decrease is incredibly small).

Figure 1: Progression of \overline{R}^2 as Variables as Sequentially Added to the Model

Figure 2 shows the trend of the change in \bar{R}^2 , or the incremental increase (and eventual decrease) in the model's predictive capability of income. The highest \bar{R}^2 according to the model was reported to be 0.447. There comes a point after the 30th iteration beyond which the marginal increase in \bar{R}^2 becomes extremely insignificant after 30 variables. Hence, we use only 30 covariates in the comparisons that ensue post this section.

Figure 2: \overline{R}^2 Delta

6.2 Modifying the Model

After going through the list of these 30 covariates, we replaced those that are unobservable– like total expenditure on pulses, leather footwear, school uniforms, toiletries etc. This gives us the set of optimal proxies that maximise \bar{R}^2 and the predictive capability of consumption expenditure for the model. This regression provides the covariates and coefficients for 2011, which then become a base to predict 2022 consumption expenditure for households. The selection of largely observable household consumption characteristics lead to the regression in Table 1, which has an \bar{R}^2 value of 0.422. This statistic in isolation does not tell us much about whether we have actually been able to improve predictions of expenditure. It's therefore crucial that we compare the \bar{R}^2 with models that are currently being used, and also see how well it predicts consumption over time.

Source	ss	df		MS	Nu	mber of obs	=	100,351	
				F(47, 100303) =			1561.47		
Model 6.9980e+12		47 1.4889e+11		39e+11	Pr	ob > F	=	0.0000	
Residual	9.5644e+12	100,303	95355	5130.6	R-	squared	=	0.4225	
					Ad	j R-squared	=	0.4223	
Total	1.6562e+13	100,350	1656	946510	Ro	ot MSE	=	9765	
	Cons_exp	Coeffi	cient	Std. e	err.	t	P> t	[95% conf.	interval]
C	ons clothes tot	2.86	7983	.035	585	80.00	0.000	2.797718	2,938249
cons_en	tertainment_tot	6.91	7222	.13866	598	49.88	0.000	6.645431	7.189013
	cons_lemon	111.	8916	2.0549	903	54.45	0.000	107.864	115.9192
cons	s_med_insti_tot	1.02	4448	.01447	747	70.78	0.000	.9960779	1.052818
cons_misc_HH_	consumables_tot	7.	2481	.2355	505	30.78	0.000	6.786513	7.709687
COL	ns_educ_exp_tot	1.01	1077	.01395	518	72.47	0.000	.9837313	1.038422
cons_nor	n_insti_med_tot	1.26	5053	.0401	189	31.48	0.000	1.186283	1.343823
	cons_egg_meat	1.60	8287	124 0	1/3	21.17	0.000	1.4593/3	1./5/202
	cons milk	1 49	6130	134.9	17	21 81	0.000	2113.011	1 19747
	cons servant	1.78	1702	.11104	105	16.05	0.000	1.564064	1,999341
cons	refined liquor	1.9	9706	.17722	259	11.27	0.000	1,649699	2.34442
	Religion_num								
	christian	518	. 493	322.99	916	1.61	0.108	-114.5666	1151.553
	hindu	-64.7	0047	302.58	357	-0.21	0.831	-657.7647	528.3638
	jain	-149.	0918	627.74	111	-0.24	0.812	-1379.456	1081.273
	muslim	11.3	2978	313.39	357	0.04	0.971	-602.9218	625.5814
other		-329	.625	442.20	575	-0.75	0.455	-1196.503	537.2531
	eikh	-500	2.40	392 61	152	-1 33	0.000	-1259 143	248 6991
	5100			502.00		1.55	0.205	12551.245	240.0552
c	ons_costly_dals	1.46	3294	.24169	989	6.05	0.000	.9895669	1.937021
cons_i	nternet_expense	5.00	6211	.47201	L18	10.61	0.000	4.081074	5.931348
	cons_cable_TV	-4.61	4038	.41076	909	-11.23	0.000	-5.419007	-3.809069
c	ons_electricity	1.42	8515	.13274	105	10.76	0.000	1.168345	1.688685
Type of	land owned num								
home	estead & other	-779.	6425	108.04	105	-7.22	0.000	-991.4006	-567.8843
	nomestead only	-107	4.53	102.82	218	-10.45	0.000	-1276.06	-873.0006
	other only	57.6	9755	311.58	353	0.19	0.853	-553.0059	668.401
	cons iowar	1 44	3057	30846	56	3 70	a aaa	6786488	2 289264
con	dryfruits tot	2.15	8256	.2790	805	7.73	0.000	1,61136	2.705152
con	cons cinema	-5.79	2737	.54475	567	-10.63	0.000	-6.860453	-4.725021
Ree	salary_earner	435.	5334	72.12	312	6.04	0.000	294.173	576.8938
con	s_vanaspati_oil	-1.78	7773	.8264	548	-2.16	0.031	-3.407615	1679323
cons	_country_liquor	4.96	9433	.27117	754	18.33	0.000	4.437932	5.500933
cons	s_quilt_matress	2.62	5459	.30101	L16	8.72	0.000	2.03548	3.215438
	cons_firewood	1.13	5562	.18169	908	6.25	0.000	.7794499	1.491673
0	oking Code num								
	charcoal	654.	7243	909.18	303	0.72	0.471	-1127.258	2436.706
	coke, coal	-397.	9478	255.49	947	-1.56	0.119	-898.7141	102.8186
	dung cake	100.	4993	161.36	535	0.62	0.533	-215.7711	416.7697
	electricity	332.	0359	555.84	125	0.60	0.550	-757.4084	1421.48
fire	wood and chips	-287.	3735	96.26	706	-2.99	0.003	-476.0558	-98.69127
	gobar gas	-262.	0427	788.62	295	-0.33	0.740	-1807.747	1283.661
	kerosene	-254.	1627	211.59	939	-1.20	0.230	-668.8841	160.5586
no cooki	ng arrangement	1211	.758	253.00	971	4.79	0.000	715.8675	1707.649
	others	12.5	7132	229.36	569	0.05	0.956	-436.985	462.1277
cons	s_costly_cereal	. 982	5165	.076	582	12.79	0.000	.8319503	1.133083
cons_	leather_sandals	640	4885	.30357	795	-2.11	0.035	-1.235501	0454763
coi	ns_uniform_boys	-2.47	7231	.29826	587	-8.31	0.000	-3.061834	-1.892628
	WH_PC_laptop	1207	.811	139.96	575	8.63	0.000	933.4766	1482.146
	_cons	953.	5948	320.25	535	2.98	0.003	325.902	1581.288

Table 1: Regression results- With 2011 coefficients Using \overline{R}^2 maximising model

6.3 Comparing the predictive capability

We have used two datasets in our comparison: household expenditure surveys for 2011 and 2022. We find the covariates of the \bar{R}^2 maximizing model from 2011 data and note down the coefficients. A similar approach is taken for the coefficients of the Grosh-Baker model for comparison purposes. To establish our model's predictive capability: (i) we compare the \bar{R}^2 for these two models (ii) we look at how well it predicts consumption income for 2022.

The Grosh-Baker model, published by the World Bank, is representative of the existing PMT methodology (ie. selecting proxies on the basis of high correlation of certain standard characteristics). For analytical purposes, we compare our results with this model to see how better does our \bar{R}^2 maximizing model fare than the existing norm.

6.3.1 Comparing Adjusted-R Square

The \overline{R}^2 of our model and the one of Grosh-Baker is 0.42 and 0.16 respectively(The latter is seen in Table 2). Our model is better at predicting consumption expenditure by using the optimal combination of covariates.

Source SS		df	MS	Number of obs		= 99,522	1
				F(29, 99492)		= 664.37	
Model 2.6247e		+12 29	9.0507e+10	Prob	> F	= 0.0000	1
Residual	1.3554e-	+13 99,492	136230118	R-squ	ared	= 0.1622	1
				Adj R	-squared	= 0.1620	
Total	1.6179e-	+13 99,521	162563793	Root	MSE	= 11672	
	Cons exp	Coefficient	Std. err.	t	P> t	[95% conf.	intervall
	rural	464.34	91.45751	5.08	0.000	285.0844	643.5956
Dwelling_unit_Code_num		-650.3634	40.79347	-15.94	0.000	-730.3181	-570.4087
cons_electricity		5.018252	.1562174	32.12	0.000	4.712067	5.324436
cons_wa	ter_bill	4.294743	.7962306	5.39	0.000	2.73414	5.855345
HH_	_Size_num	792.8436	18.1106	43.78	0.000	757.347	828.3402
Education_num							
02		-220.1121	730.9088	-0.30	0.763	-1652.684	1212.46
03		-998.1222	1521.679	-0.66	0.512	-3980.594	1984.349
04		553.4163	748.2905	0.74	0.460	-913.2239	2020.056
05		44.47575	140.2491	0.32	0.751	-230.4107	319.3622
06		92.46202	133.6529	0.69	0.489	-169.4959	354.42
07		529.1588	127.1047	4.16	0.000	280.0351	778.2825
08		410.4356	135.4971	3.03	0.002	144.8629	676.0083
	10	778.3259	157.8562	4.93	0.000	468.9297	1087.722
	11	2102.577	337.7548	6.23	0.000	1440.582	2764.573
	12	876.2526	165.7386	5.29	0.000	551.407	1201.098
13		1719.375	237.3167	7.25	0.000	1254.237	2184.513
	Age	8.632137	3.057036	2.82	0.005	2.640383	14.62389
Sex		6.094483	121.8287	0.05	0.960	-232.6882	244.8772
Reg_salar	y_earner	854.0273	89.19677	9.57	0.000	679.2027	1028.852
La	and_owned	.2634127	.0224612	11.73	0.000	.219389	.3074364
WH_t	elephone	2944.291	153.1941	19.22	0.000	2644.033	3244.55
	WH_stove	779.8697	95.07499	8.20	0.000	593.5238	966.2155
W	/H_fridge	2153.303	108.624	19.82	0.000	1940.402	2366.205
WH_A	C_cooler	-115.877	123.5455	-0.94	0.348	-358.0248	126.2708
WH_elec	tric_fan	93.58415	99.56841	0.94	0.347	-101.5687	288.737
	WH_Radio	483.5018	89.08505	5.43	0.000	308.8961	658.1074
WH_motorcycle		1452.256	95.65581	15.18	0.000	1264.772	1639.74
WH_car		4355.089	160.3963	27.15	0.000	4040.714	4669.464
cons_servant		4.053995	.1314014	30.85	0.000	3.79645	4.31154
_cons		1707.836	234.2084	7.29	0.000	1248.79	2166.881

Table 2: Regression results- With 2011 coefficientsUsing Grosh-Baker model

6.3.2 How well does it actually predict consumption expenditure

In order to determine this we test it on the 2022 dataset for consumption expenditure. We start by creating predicted values for consumption expenditure (2022) using covariates from our \bar{R}^2 maximizing model for 2011, as well as the Grosh-Baker model. After this, we plot the predicted expenditure overlapped with actual expenditure. Figure 3 overlaps the \bar{R}^2 maximizing model and Figure 4 overlaps the Grosh-Baker model with actual expenditure from NSS HCES 2022. The graph has household consumption expenditure (in Rs) on the x axis and the distribution of households on the y axis.

Figure 3: \overline{R} Maximizing Model Overlapped with Actual Consumption

Figure 4: Grosh-Baker Model Overlapped with Actual Consumption

Legend: Red line represents real per household consumption expenditure in 2022, and Blue line represents predictions.

It is evident that the Grosh-Baker model inaccurately predicts household consumption expenditure, and the \bar{R}^2 maximizing model is in sync with true consumption expenditure. This is not only a testament to the relatively superior predictive ability, but also a proof that the covariates chosen while maximizing \bar{R}^2 are better at yielding time-invariant characteristics as they have a high degree of predictability in 2022 as well.

We now look at applications of the \bar{R}^2 maximizing model to study how better predictors can help us in delivering targetted social programs more effectively. We understand this by comparing the errors across various poverty lines, using them synonymously with eligibility thresholds.

6.4 Examining changes in errors with shifts in poverty line

The choice of an ideal poverty threshold for targeting programs is widely debated, especially regarding its impact on welfare. Literature suggests that raising the poverty line reduces undercoverage

Poverty Lines	Exclusion Error	Accuracy	Inclusion Error
P1 @ Rs. 1172.5 per person/mo			
(2011 poverty line)	2.2%	95.23%	2.54%
P2 @ Rs. 1331.925 per person/mo	0.0r07	00 4007	4 1007
(World Bank poverty line) P3 @ Rs. 008 per person/me	3.35%	92.46%	4.18%
(Tendulkar Committee noverty line)	0.89%	98.35%	0.75%
(Terraanian Commissione povering time)	0.0070	00.0070	0.1070

but increases leakages, and vice versa for lowering the poverty line (Diether et al.; Balaji).

Table 3: Impact of Change in Poverty Lines

To test this hypothesis, we adjusted the national poverty line by \pm INR 200 (@2011 rates).¹ Our results, in Table 3, show that both undercoverage and leakage increase when the poverty line is raised and decrease when it is lowered. From our results we cannot conclude whether we should shift the poverty line up or down to change undercoverage and leakage. Rather, our results are possibly a reflection of the fact that our model better predicts consumption expenditure of the poorest (bottom 30%). To verify this, we analyzed the real versus predicted distributions of consumption expenditure, dividing households into three groups based on the income distribution, or tertiles (see Figure 5 and 6). Our findings confirm that our model performs best for households in the lowest income group, outperforming the Grosh-Baker model. This reflects our model's prioritization of proxies that strongly correlate with extreme poverty, ensuring effective targeting of the most vulnerable populations.

Figure 5: Side-by-Side Comparison of Tertiles for Per capita Consumption Expenditure vs Predicted Consumption Expenditure by \overline{R}^2 maximising model

(a) Tertile 1: Total Exp vs Prediction (b) Tertile 2: Total Exp vs Prediction (c) Tertile 3: Total Exp vs Prediction Legend: Red line represents real per capita consumption expenditure in 2022, and Blue line represents predictions.

¹We take the national average (across rural and urban) poverty line to be Rs. 1172.5 per person per day. The higher poverty line (denoted by P2) is calculated according to the World Bank poverty line of \$2.15 per person per day (PPP 2017), which amount to Rs. 1331.925 per person per month. The lower poverty line (denoted by P3) is based on the 2011 Tendulkar committee recommendations, which amounts to Rs. 908 per person per month.

Figure 6: Side-by-Side Comparison of Tertiles for Per Capita Consumption Expenditure vs Predicted Consumption Expenditure using Grosh-Baker Model

(a) Tertile 1: Total Exp vs Prediction (b) Tertile 2: Total Exp vs Prediction (c) Tertile 3: Total Exp vs Prediction Legend: Red line represents real per capita consumption expenditure in 2022, and Blue line represents predictions.

7 Scope and Conclusion

This paper underscores the importance of refining Proxy Means Tests to enhance targeting in welfare schemes. By optimizing \bar{R}^2 and introducing dynamic, observable proxies for consumables, the proposed model minimizes inclusion and exclusion errors. It highlights the need for adaptive targeting mechanisms that account for changing socio-economic conditions, ensuring effective and equitable resource allocation over time. But, it is important to note that the selected covariates referred to in the paper are not to be misunderstood as the most optimal ones. We simply recommend the framework used to arrive at the said covariates. These obviously change with time, and can be updated accordingly. Future research should explore the integration of machine learning to dynamically adapt proxy sets in real time, potentially reducing model errors further.

We propose a novel framework to optimally select PMT covariates that best reflect consumption expenditure using national level data. However, the proxies that delineate the bottom 40% in say, Rajasthan (a North Indian High Focus State) may be very different from that in Kerala (a South Indian Low Focus State) given state specific household characteristics, institutions, political climate, and different state poverty lines. Further research can be undertaken using the \bar{R}^2 maximizing model in exploring state-specific adaptations to account for regional socio-economic disparities and cultural heterogeneity. Investigations into how PMT frameworks can incorporate time-series data to dynamically adjust for evolving household characteristics and poverty thresholds across states would be valuable. Moreover, examining the role of localized administrative systems and governance structures in implementing and refining PMT-based targeting mechanisms could yield insights for practical policy applications and help further reduce the errors.

8 References

Beuermann, Diether W., et al. "Shooting a Moving Target: Evaluating Targeting Tools for Social Programs When Income Fluctuates." *Journal of Development Economics*, vol. 172, 2024, p. 103395, https://doi.org/10.1016/j.jdeveco.2024.103395. Accessed 1 Dec. 2024.

Grosh, Margaret, and Judy Baker. "Proxy Means Tests for Targeting Social Programs : Simulations and Speculation." *World Bank*, 2019, documents.worldbank.org/en/publication/documents-reports/documentdetail/750401468776352539/proxy-means-tests-for-targeting-social-programs-sim ulations-and-speculation. Accessed 1 Dec. 2024.

Kidd , Stephen , and Emily Wylde. "Targeting the Poorest: An Assessment of the Proxy Means Test Methodology." *Australian Government Department of Foreign Affairs and Trade*, Sept. 2011, www.dfat.gov.au/about-us/publications/Pages/targeting-the-poorest-an-assessment-of-the-proxy-m eans-test-methodology.

Klasen, Stephan, and Simon Lange. "Targeting Performance and Poverty Effects of Proxy Means-Tested Transfers: Trade-Offs and Challenges." *Ibero America Institute for Econ. Research (IAI) Discussion Papers*, 18 Mar. 2015, ideas.repec.org/p/got/iaidps/231.html. Accessed 1 Dec. 2024.

Mahamallik , Motilal, and Gagan Bihari Sahu. "Identification of the Poor: Errors of Exclusion and Inclusion." Economic and Political Weekly, vol. 46, no. 9, 2011, pp. 71–77. *JSTOR*, www.jstor.org/stable/41151842, https://doi.org/10.2307/41151842.

Murugesan, Balaji. "Changing poverty line-Inclusion and Exclusion of Poor in Indian States." *International Journal of Business Excellence*, vol. 1, no. 1, 2019, p. 1, https://doi.org/10.1504/ijbex.201 9.10023037. Accessed 2 Feb. 2020.

National Sample Survey Office. Household Consumption Expenditure Survey: 2022-23. Ministry of Statistics and Programme Implementation, Government of India, 7 June 2024, https://microdata.go v.in/nada43/index.php/catalog/194.

National Sample Survey Office. Household Consumer Expenditure: Type 1, July 2011 - June 2012, NSS 68th Round. Ministry of Statistics and Programme Implementation, Government of India, 20 Nov. 2017, https://microdata.gov.in/nada43/index.php/catalog/1.

Moharir, Advait. hces_2022. GitHub, 2023, https://github.com/advaitmoharir/hces2022.